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Abstract

The wave propagation in a piezoelectric rod of 6 mm symmetry is investigated by applying a 3-D piezoelectric elastic
model. A self-adjoint method is introduced to solve this problem, this method avoids calculating the generalized eigen-
value equation, it completely draws the dispersion curves in the forms of Quasi-P wave, Quasi-SV wave and Quasi-SH
wave under the self-adjoint boundary condition, and it can evaluate the dispersion curves of all kinds of boundary con-
ditions. As an example, the dispersion curves of PLT-5H are completely drawn, we also found the Quasi-SV wave has
standing wave phenomenon in the PLT-5H rod. In addition the relation of dispersion curves among different boundary
conditions is discussed, and an experiment method is introduce to decide the dispersion curves for another boundary
conditions.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials (PEM) are used to fabricate sensors for various applications; they are always in
layer or film forms using surface waves to realize the energy exchange with their environment. In this paper,
the wave propagation in piezoelectric rod of 6 mm symmetry is investigated by applying a 3-D piezoelectric
elastic model, in order to realize the energy exchange by bulk waves, for they have the low dissipative atten-
uation and the good oriented capacity. Furthermore the PEM can be fabricated in three dimensions, the
bulk waves and surface waves can be applied together to actualize the information exchange with its
environment.
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For the FEM always in layer or film forms, the study of surface waves in PEM is very abundant.
The lamb wave propagation in thin piezoelectric layer bonded an elastic substrata or the thin piezo-
electric layer, which is sandwiched by to semi-infinite body are studied (Joshi and Jin, 1991; Mesquida
et al., 1998; Jin et al., 2002). The love wave propagation in thin piezoelectric layer bonded an elastic
substrata is considered (Liu et al., 2001). Seshadri (1991) takes a method to check the corrugated sur-
face by using Rayleigh wave. Darinkii and Weihnacht (2002) study a fast surface wave in piezoelectric
layer. Mayer (1995) studies the surface acoustic waves in non-linear elastic media. But in the way of
study the bulk waves in the PEM is little. Paul and Venkatesan (1987, 1988) study the vibration prob-
lems of arbitrary cross section using Fourier expansion collocation method. Guzellsu and Saha (1981)
investigate the wave propagation in bones that belong to hexagonal, but they ignore the influence of
electric fields in stresses. Wislon and Morrison (1977) study the waves propagation in piezoelectric rods
of hexagonal crystal. Paul and Venkatesan (1989) study the waves propagation problems of arbitrary
cross section using Fourier expansion collocation method. In these papers, the authors all get the
general solution and derive the dispersion equation for some special boundary conditions, but their
dispersion equations are depended on the roots of a generalized eigenvalue equation, so it is very hard
to get the dispersion curves, and this method is very difficult to evaluate the dispersion curves of an-
other boundary conditions. A general solution of 3-D problem is obtained by using differential
operator method (Wang and Zheng, 1995). Ding et al. (2002, 2003) consider the wave, which
propagates along radial direction in a piezoelectric cylinder in the case of axial symmetry and plane
strain.

This paper is an attempt on the bulk waves propagation in an endless piezoelectric rod (of hexagonal
crystal 6 mm). A self-adjoint method is introduced to solve this problem, this method avoids calculating
the generalized eigenvalue equation, which is mentioned above, it completely draws the dispersion
curves in the forms of Quasi-P wave, Quasi-SV wave and Quasi-SH wave under the self-adjoint bound-
ary condition, and it can evaluate the dispersion curves of all kinds of boundary conditions. A finite inte-
gral is applied to expand the radial part of the wave in orthogonal completeness base and combine the
governing equations and the boundary condition together (to realize the self-adjoint), after two group
orthogonal completeness bases are found, and their corresponding self-adjoint boundary conditions are ob-
tained too, the dispersion equations and guided wave conditions are derived, respectively. As an example
the dispersion curves, phase velocity curves, group velocity curves and vibration amplitude along radial
direction of PLT-5H are completely drawn and compared under these two group special boundary condi-
tions; we also found the Quasi-SV wave has standing wave phenomenon in the PLT-5H rod. Although the
dispersion equations are not directly obtained for another boundary conditions, quoted the theory on the
relation of the body vibration frequencies with different boundary conditions being studied by Gladwell
(1986), the dispersion curves for different boundary conditions could be drawn out by some aided
experiments.

The contents in this paper are arranged in following sequence. First, the governing equations for
axial symmetry waves in piezoelectric rod (6 mm) are discussed in Section 2. In Section 3, the finite inte-
gral is done, the radial part of the wave is expanded in orthogonal completeness base (the detail will dis-
cuss in Appendix A), the governing equations and the boundary condition are combined together
(to realize the self-adjoint). Then applying two group self-adjoint boundary conditions, the correspond-
ing guided wave conditions and dispersion equations are derived. In Section 4, the numerical calculation
is performed; the frequency dispersion curves, phase velocity curves, group velocity curves and the vibra-
tion amplitude along radial directions are completely drawn under the two group special boundary condi-
tions. Section 5 is our conclusion. In Appendix A, the two group orthogonal completeness bases are
discussed in detail. In Appendix B, the relation of dispersion curves of all different boundary conditions
is discussed, and an experiment method is introduced to draw the dispersion curves for another boundary
conditions.
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2. Governing equations

We consider a linear piezoelectric body that is a cylinder in the Cartesian frame. The equations of motion
and Gauss’ law have the following representation:

VT = pii (1)

V-D=0 (2)
where, T, u, D and p are denoted the stress tensor, the displacement vector, the dielectric displacement vec-
tor and the mass density, respectively. A superimposed dot indicates differentiation with respect to the time
parameter ¢, and the symbol V- represents divergence with respect to the spatial coordinates x. Here both
body forces and body charges are neglected for simplicity.

The linear constitutive relations for piezoelectric solids are in following:

T=cS—¢E (3)

D =¢"S+¢E (4)

where, ¢, e and ¢ are the elasticity tensor, the piezoelectric tensor and the dielectric tensor, respectively. A
superimposed T indicates transpose. The strain tensor S and the electric field intensity vector E are related
to the displacement vector u and the electric potential ¢ through the following:

(5)
(6)

S = % [Vu + (Vu)']

E=-V¢
In the above equations, the symbol V indicates gradient.
We consider PEM of a hexagonal crystal (6 mm), and notice that polycrystalline ferroelectric’s ceramics
are of the same symmetry. Placing the z-axis along the sixfold axis and using the compressed matrix notation,
we represent the elasticity tensor, the piezoelectric tensor and the dielectric tensor by the following matrices:

reyy cp c3 O 0 0 7 ro 0 e3]
0O 0 0 0 0
Ci2 Ci1 C13 . . . . . €3] ey 0 0
c— €13 C13 C33  e= €33 Ce=|0 & 0 (7)
0 0 0 C44 0 0 0 €1s 0
0 0 €33
0 0 0 0 Cyq 0 €1s 0 0
LO 0 0 0 0 ¢4l LO 0 0
where, cgs = (¢11 — ¢12)/2. In the cylinder coordinate the equations of motion (1) and Gauss’ law (2) take
the following forms, we consider the axial-symmetric case:
c 62“’+16”"_lu +e %‘F(C +e )@—k(e te )az_d)_ Ou,
"o Trar 2T o2 B 50z sTeUas T Poe
62u0 1 au() + 6 u(; a Up
ces 6r2 roor “z 02 6t2 ®)
s+ ca) Qup 1w azuz Towy Ow (T 109\ To_ u
€ T\ Bz az r Oz cu r or Bz TN\ T o oz Pop
o 2 2 2
U, lau, O u, lau,. 0 u. 0°p 10¢ ¢
(e1s +eﬂ)<araz p az> e <araz a> tengy e (arz+rar> gz =0
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The following non-dimensional forms are introduced:

S L _Z g femt U W e d
b’ b’ o b’ b’ b’ b P T\ enb

C11 C12 13 C44 Co6
cg=—, O=—7, O=—, C=—, C(5=—
33 C33 C33 33 C33
o — €ls o — €3] or — €33 e — 11
1 — ) 2 — ) 3 = ) 1 —
1V €33833 1V €33833 1/ €33833 €33
(7 TG00 (5 09z Oz (7]
0 = — 0y =—, 3= 04 = — 05 = — 0 = —
C33 €33 C33 C33 C33 C33
D, Dy D,
D, = D, = D; =

\/(3338337 ? \/033833’ ’ \/€33€33

where, b is the outer radius of the cylinder. Then rewrite Eq. (8), yield:

(22:;4—i2:l rlz >+C4ZZZ+(63+C4)6’2VZ (el+ez)§2; % 9)
(C3+C4)(% igz>+64<§%+i%v:)+%+e (%2—2+laa—(f>+e3%27(fa;—: (11)
St e ) S B0

For convenience, we still use r, z and ¢ in Egs. (9)-(12).
A finite integral method is introduced to assist in solving this problem.

3. The solution of equations

First, the finite Bessel integral is used to expand the radial part of the wave propagation in the rod. The
finite Bessel integral is:

7 (u / S (ur)yrdr, v=0,1, (13)

where, J,(ur) is the first kind of Bessel function, u is the integral variable. v = 0,1, means that only the
zero class and first class Bessel functions are used. Apply the first class of finite Bessel integral to
the Egs. (9) and (10), and the zero class of finite Bessel integral to the Eqs. (11) and (12), yield in matrix
forms:
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ey (pr)u+ e (pr)r gt CIWJO(W)u + (3 + ca)Ji (ur)r &+ (6’1 +ea)y (ur)rt
= | —(c3 4 ca)rJo(ur) & — cado(ur)rS — caurd (ur)w — elJo(ur) —eyurd (ur)o

—erJo(ur)r2 — eyurd  (ur)w — (61 + &) o (ur) & + slrJo(,ur) wreawi(wr)e |,
vt ov
X csptv)! —c;;v—i—vz c5J1(,ur)v+c5J1(ur)r§—csurJ0(,ur)v (14a,b)

r=1

So Eq. (14a,b), which combine the governing equations and the boundary information together, are the
dynamics equations in domain (u:z, t). Eq. (14a) is about displacement u, w and electric potential ¢; Eq.
(14b) is only about displacement v. So the Quasi-SH wave could propagate solely without the influence
on electric potential.

Let us assume that the wave propagation in the rod have following forms:

u(r,z,1) = fi(r)e™ ", u(r,z,1) = fo(r)e®
w(r,z,t) = fi(r)e ) (r,z,0) = fa(r)e'=

where, fi(r), j = 1,2,3,4 are the wave propagation amplitude coefficients, k is the wave number, w is the cir-
cular frequency. So the displacements and electric potential #/t, v/1, w’, ¢’0 can be written in following
forms:

L{JI :Al(‘u)ei(kz—wr), Jl -4 (,u)e(kz wt)
W/Q _ ( )ei(szml)7 Jg _ ( ) i(kz—ot)

where, 4;( fof/ Jo(ur)rdr, j=1,2,3,4 , and while j = 1,2, v=1, while j = 3,4 , v = 0. Substitute Eq.
(16) 1nto the left parts of Egs. (14a,b), give:

el + ek — o? i(cs + cq) ik i(e; +ex)uk | [ A (p)elteey
i(c3 + ca)uk —i — eyl —e ) — ek | | As(u)eiteen
i(e; + ex)uk —ey 12 — esk? e + K Ay(p)eikz=o
ey (r)u + e Jy ()2t — courdo(ur)u + (c3 + ca)J 1 (ur)r e+ (er + ex)J 1 (ur)rL
= | —(cs+ca)rJo(ur) & qu_ c4J0(,ur)r%#f — ey (ur)w — elJo(ur)r — ey (ur)p
& — ey (ur)w — (ey + ex)rJo(ur) L+ e o (ur) < % 4 gy, (ur)e

(15)

(16)

—erJo(ur)rg

r=1

0
x (esi + cak® — SYRE ) i(kz—or) _ chl(,lU”)U—f—Cle(/«U’)ra—:— esurdo(ur)v (17a,b)
r=1

So Eq. (17a,b) are about the parameters (u,k,®). When we choice the appropriate boundary condition, if
which makes the right part of Egs. (17a,b) becoming zero and calculates the value of y, the dispersion equa-
tion can be derived, furthermore, the dispersion curves under such boundary condition are obtained.

We consider two group self-adjoint boundary conditions for the rod,

Elastic simply supported (BI):

w=0, ro;+2cu=0, rog+2csv=0, (Displacements and stress conditions)
¢ =0, (Electric field condition)
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and
Rigid sliding supported (BII):
u=0, v=0, o05=0, (Displacements and stress conditions)

19
D, =0, (Electric field condition) (19)

Substitute the two group boundary conditions (18) and (19) into the right parts of Eq. (17a,b), the right
parts of Eq. (17a,b) will equal to zero, respectively. And give:

el + ek — o? i(c3 + cq) ik i(ey +ex)uk | [A1(1)

i(c3 + cq) ik —i* — eyl + 0 —eyl —esk? | | As(p) | =0 (20a)
i(e; + ex)pk —e1p? — esk’ e’ + 1k As(p)
(espl® + ek — @) Ay (1) = 0. (20b)
where, the value of u is decided by guided wave condition
Jo(u) =0, (Boundary condition BI) (21)
and
Ji(u) =0, (Boundary condition BII) (22)

When the waves propagate in the rod, the Eq. (20a,b) have the non-zero solutions, which need the deter-
minants of the coefficients matrices of Eq. (20a,b) equal to zero:

el + ek — o? i(c3 + cq) ik i(e) + ex)uk

det i(les+e)uk  —k —cyt + 0 —ept —esk® | =0 (23a)
i(e; + ex)uk —ey 12 — esk? e+ Kk
det(csp® + cak® — 0*) =0 (23b)

Formulas (23a,b) are the frequency dispersion equations of the two group boundary conditions (BI and
BII).

The roots of Jy(i) =0 (BI) or the roots of Ji(u) =0 (BII) are a sequence, noted u;,, n=1,2,3,...,
i=0,1.

4. Numerical calculation

In this section, the numerical calculation is performed to get the frequency dispersion curves, phase
velocity curves, group velocity curves and the vibration amplitude along radial direction under boundary
conditions BI and BII. For calculating, the data of PLT-5H ferroelectric’s ceramics are introduced in fol-
IOWil'lg, c1 = 121/117, Cr = 53/78, 3 = 841/1170, Cq = 23/117, C5 = 83/468, e = 17/39, € — —1/6, €3 = 233/
390, ¢, = 15/13.

Fig. 1 shows the frequency dispersion curves of boundary condition BI. There have three curves for
every number (1, 2 or 3); they are Quasi-P wave, Quasi-SV wave and Quasi-SH wave. The symbols P,
SV and SH present Quasi-P wave, Quasi-SV wave and Quasi-SH wave. The numbers of 1, 2 and 3 are cor-
responding to the values of g, n=1,2,3. The two dash-dot lines are the asymptotes; the P line is the
asymptote of Quasi-P wave, The S line is the asymptote of Quasi-SV wave and Quasi-SH wave.

Fig. 2 shows the frequency dispersion curves of Quasi-P wave under boundary condition BI and BII. The
dispersion curve of boundary condition BII is higher than the dispersion curve of boundary condition BI
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Fig. 2. Frequency dispersion curves (BI & BII Quasi-P wave).

for every number (1, 2, 3 or 4). It implies that the frequency dispersion curves of Quasi-P wave for different
boundary conditions have some regularity. This detail will discuss in Appendix B.

Fig. 3 shows the frequency dispersion curves of Quasi-SV wave and Quasi-SH wave under boundary
condition BI and BII. The dispersion curve of boundary condition BII is higher than the dispersion curve
of boundary condition BI for every number (1, 2 or 3). It implies that the frequency dispersion curves of
Quasi-SV wave and Quasi-SH for different boundary conditions have some regularity. This detail will dis-
cuss in Appendix B.

Fig. 4 shows the phase velocity curves of boundary condition BI. The dash-dot lines of P and S present
the velocity cp = /(¢33 + 2cas)/p and cs = \/cas/p.

Fig. 5 shows the group velocity curves of boundary condition BI. The Quasi-SV wave has standing wave
phenomenon in PLT-5H material.

Figs. 6 and 7 show the vibration amplitude of along radial direction curves of boundary condition BI
and BII.
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5. Conclusion

The wave propagation in a piezoelectric rod of 6 mm symmetry is solved. The dispersion curves are plot-
ted in the forms of Quasi-P wave, Quasi-SV wave and Quasi-SH wave. As an example the dispersion curves
of PLT-5H are completely drawn, we also found the Quasi-SV wave has standing wave phenomenon in the
PLT-5H rod.

Elastic waves provide a useful and versatile way of non-destructively testing various structures. We hope
to apply all kinds waves, not only the surface waves, also the bulk waves in PEM, to actualize the non-
destructively testing, also to ascertain the damage position and damage degree for various structures in
the future.

Although the symmetrical problem is studied in the paper, the asymmetrical problem will be studied
following.



J.P. Wei, X.Y. Su | International Journal of Solids and Structures 42 (2005) 3644-3654 3653
Acknowledgment

The National Natural Science Foundation of China supported this work (No. 10172004 and 10232040).

Appendix A

Let us assume that uo; and g, are two arbitrary roots of Jyo(u) = 0, do the following integral, gives:

: 0 i #]
IR e
similarly, if u;; and u,; are two arbitrary roots of J;(u) = 0, get:
0 i#]
=0.5J0(py) 2 () i=J

We could see that the sequences of {Jo(po,r)|r € [0,1]} and {Jy(uy,r)|r € [0, 1]} are both orthogonal com-
pleteness sequences. It is clear that for arbitrary function f{r) could be written in series:

/olJ‘ (1)1 (pyyr)rdr = {

o]

f(l") = ZAW(:“n)JV(ﬂnr)’ V= 07 1

n=1

where,

1
MM=AN%MWMV=M

So that the radial part of the wave propagation is expanded into orthogonal modes, and the finite inte-
gral realizes the self-adjoint of governing equations with boundary conditions.

Appendix B

In this paper, although only two group orthogonal completeness bases and their self-adjoint boundary
conditions are found and the dispersion curves are completely drawn only for these two group boundary
conditions, the dispersion curves can be outlined for another different boundary conditions (it is very dif-
ficult to get the orthogonal completeness base for every boundary condition).

For a structure, if the boundary conditions are changed, the frequencies of the body will be changed too,
but the change has the regularity by Gladwell (1986). Assuming w;,,, j, m = 1,2,3,... are the frequencies; j is
for different boundary conditions, m is the mth mode, so they have following inequality:

0 < w < wy W < <0< << Wy < Wy <z, <--- (Bl)

It also can be seen in Figs. 2 and 3 that the same kind of curves (just as Quasi-P wave) of BII are higher
than the curves of BI for the same n and the same kind of curves don’t cross, and there has the inequality
pot < pii1 < poa < pia < gz < py3 by calculating Jo(u) = 0 and J,(u) = 0. So, we could decide the dispersion
curves for arbitrary boundary condition from some aided experiments. If we get the frequency Q and wave
number K of the curve and evaluate the curve’s type (Quasi-P wave, Quasi-SV wave or Quasi-SH wave), we
can mark a point in Fig. 2 or Fig. 3, after a few points we could line the dispersion curves for this boundary
condition.
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